
Reversing with Radare2
Starting Radare
The basic usage is radare2 exe (on some systems you can use simply
r2 instead of radare2). If there exists a script named exe.r2, then
it gets executed after the others rc-files. If you want to run radare2
without opening any file, you can use -- instead of an executable
name.
Some command-line options are:
-d file debug executable file
-d pid debug process pid
-A analyze all referenced code (aaa command)
-r profile.rr2 specifies rarun2 profile (same as

-e dbg.profile=profile.rr2)
-w open file in write mode
-p [prj] list projects / use project prj
-h show help message (-hh the verbose one)
Example: r2 -dA /bin/ls

Running in different environments: rarun2
rarun2 runs programs with different environments, arguments, per-
missions, directories and overridden default file-descriptors. Usage:
rarun2 [-t|script-name.rr2] [directives] [--] [prog-name] [args]
rarun2 -t shows the terminal name, say α, and wait for a connec-
tion from another process. For instance, from another terminal, you
can execute rarun2 stdio=α program=/bin/sh (use stdin/stdout to
redirect one stream only). Run rarun2 -h to get a sample .rr2 file.
rarun2 supports a lot of directives, see the man page for details.

General information
The command ? prints the help. Command names are hierarchically
defined; for instance, all printing commands start with p. So, to un-
derstand what a command does, you can append ? to a prefix of such
a command; e.g., to learn what pdf does, you can first try pd?, then
the more general p?. You can get recursive help with ?*; e.g.: p?*
Single-line comments can be entered using #; e.g. s # where R we?.
Command ? can also be used to evaluate an expression and print
its result in various format; e.g. ? 5 * 8+2 (note the space after ?).
Commands ?v/?vi print result only in hex/decimal. There are also
some special $-variables (list them all with: ?$?); e.g.:
$$ current virtual seek
$b block size
Where an address addx is expected, you can provide any expression
that evaluates to an address, e.g. a function name or a register name.
In this cheatsheet we sometimes use fn-name, instead of addx, to
emphasize that the argument is supposed to be a function starting
address. As default address is (usually?) used the current seek: $$.
All commands that:
• accept an optional size (e.g. pd), use the current block size by

default (see: b)
• accept an optional address (e.g., pdf), use the current position

by default (see: s)
Commands can be chained by using ;; e.g. s fun; pd 2.
A single command can be applied to each element of a sequence by
using @@; e.g. axt @@ str.*, see @@?.

Internal grep-like filtering
You can filter command output by appending ~[!]str, to display only
rows [not] containing string str ; e.g. pdf~rdx and pdf~!rdx. You can
further filter by appending
:r display row r (0 ≤ r < #rows or, backwards

with: −#rows ≤ r ≤ −1)
[c1[, c2, . . .]] display columns c1, c2, . . . (0 ≤ ci < #cols)
:r[c1, . . . , cn] display columns c1, . . . , cn of row r
.. pipe output into less-like viewer
... pipe into HUD, which filters space separated strings
Examples: afl~[0], afl~malloc[0], pdf~:2 and pdf~mov:2
There is much more (sorting, counting, . . .); see: ~?

Shell interaction
Command output can be redirected to a file by appending >filename
or piped to an external command with |progname [args]. Examples:
afl > all_functions and afl | wc -l.
External commands can be run with !!progname [args]. Note: if a
command starts with a single !, the rest of the string is passed to cur-
rently loaded IO plugin (only if no plugin can handle the command,
it is passed to the shell).
Moreover, backticks can be used to send the output of r2-commands
as arguments; e.g. !!echo ‘? 42‘. Vice versa output of external
programs can be used as arguments for internal commands; e.g. pdf
‘echo 3‘ @ ‘echo entry0‘.
Some common Unix-like commands are implemented as built-ins; e.g.
ls, cd, pwd, mkdir and rm.

Radare scripting
. filename interpret r2 script filename
.! command interpret output of command as r2 commands

Python scripting (via r2pipe)
You can script Radare2 with Python, by leveraging r2pipe, that can
be easily installed (inside any Python 2 virtual environment) with:
pip install r2pipe.
Then, you can spawn a Python interpreter, from inside r2, with:
#!pipe python [python-file]
or simply:
#. python-file
Once you are in Python-world, you can connect to r2 by
importing r2pipe and inizializing some variable, say r2, with
r2pipe.open("#!pipe"), or simply r2pipe.open().
Then you can interact with Radare by invoking method cmd; e.g.
print(r2.cmd(’pdf @ entry0’)).
You can make most Radare2 commands output in JSON format by
appending a j; e.g. pdfj (instead of pdf).
Method cmdj can de-serialize JSON output into Python objects; e.g.
f = r2.cmdj(’pdfj @ entry0’)
print f[’name’], f[’addr’], f[’ops’][0][’opcode’]

r2pipe: connecting to other r2 instances
You can connect to any web-listening instance of r2 by passing
r2pipe.open a string of the form ’http://host:port’. By using this
approach you get your own seek-cursor: your seek commands won’t
affect others.

To open a background web-service in r2 use command =h&. You may
also want to take a look at configuration variable http.sandbox.

Configuration
e?? list all variable names and descriptions
e?[?] var-name show description of var-name
e [var-name] show the value of all variables [var-name only]
e var-name =?[?] print valid values of var-name [with descript.]

E.g. e asm.arch=??
eco theme-name select theme; eg. eco solarized
eco list available themes
b [size] display [set] current block size
env [name [=value]] get/set environment variables
Some variables
asm.pseudo enable pseudo-code syntax
asm.bytes display bytes of each instruction
asm.describe show opcode description
asm.cmtright comments at right of disassembly if they fit
asm.emu run ESIL emulation analysis on disasm
asm.demangle Show demangled symbols in disasm
bin.demangle Import demangled symbols from RBin
cmd.bp command to run when a breakpoint is hit;

e.g. cmd.bp=!!program
cmd.stack command to display the stack in visual

debug mode (Eg: px 32)
dbg.follow.child continue tracing the child process on fork
dbg.slow show stack and regs in visual mode, in a slow but

verbose (e.g. telescoping) mode; check column mode
dbg.trace trace program execution (check also asm.trace)
io.cache enable cache for IO (=non-persistent write-mode)
scr.utf8 show nice UTF-8 chars instead of ANSI

(Windows: switch code-page with chcp 65001)
scr.utf8.curvy show curved UTF-8 corners (requires scr.utf8)
scr.nkey select seek mode; affects n/N in visual mode
scr.breaklines break lines in Visual instead of truncating them
scr.html disassembly outputs in HTML syntax
scr.wheel enables mouse-wheel in visual mode

Searching: /
/ str search for string str
/x hstr search for hex-string hstr
/a asm-instr assemble instruction and search for its bytes
/R[/] opcode find ROP gadgets [with r.e.] containing opcode;

see: http://radare.today/posts/ropnroll/
/A type find instructions of type type (/A? for the listof types)
Also: e search.in=?? and e??search for options

Seeking: s
s print current position/address
s addx seek to addx
s.. hex changes least-significant part of current address to hex
s+ n and s- n seek n bytes forward/backward
s++ and s-- seek block-size bytes forward/backward
s- undo seek
s+ redo seek
s= list seek history
s* list seek history as r2-commands

http://radare.today/posts/ropnroll/

Writing: w
wa asm-instr assemble+write opcodes; quote the whole command

for more instructions: "wa instr1; instr2; . . . "
wao . . . replace current instruction; see wao? for details
w[z] str write string str [and append byte \x00]
wx hex-pairs write hex-pairs
wc list pending changes (see variable io.cache)
wtf [file] [size] write to file
wopO v print offset of v inside De Bruijn pattern; equiv. to

ragg2 -q v; to produce a pattern: ragg2 -r -P size

Analysis (functions and syscalls): a
aaa analyze (aa) and auto-name functions
afl[l] list functions [with details]
afi fn-name show verbose info for fn-name
afn new-name addx (re)name function at address addx
asl list syscalls
asl name display syscall-number for name
asl n display name of syscall number n
afvd var-name output r2 command for displaying the

address and value of arg/local var-name
.afvd var-name display address and value of var-name
afvn name new-name rename argument/local variable
afvt name type change type for given argument/local
afv- name removes variable name
axt addx find data/code references to addx
ahi {b|d|h|o|r|S|s} @ addx define binary/decimal/hex/octal/IP/

syscall/string base for immediate

ESIL: ae
aeim initialize ESIL VM stack
aepc addr change ESIL PC to addx (aeip sets PC to curseek)
aer . . . handle ESIL registers like dr does
aes[b|o] perform emulated debugger step [back|over]
aesu addr step until given address

Graphviz/graph code: ag
ag addr output graphviz code (BB at addr and children)

E.g. view the function graph with: ag $$ | xdot -
agc addr callgraph of function at addx
agC full program callgraph

Flags (AKA “bookmarks”): f
fs [name] display flagspaces [select/create fs name]
fs+ name push previous flagspace and set name
fs- pop to the previous flagspace
f list flags
f name @ addx or
f name = addx associate name name to address addx
f- @ addx remove the association at address addx
f- name remove the association with name name

Comments: C
CCu text [@ addx] set (update?) comment text at addx
CC text [@ addx] append comment text at addx
CC- [@ addx] remove comment at addx
CC. [@ addx] show comment at addx
CC! [@ addx] edit comment using cfg.editor (vim, . . .)

Debugging: d
?d opcode description of opcode (eg. ?d jle)
dc continue (or start) execution
dcu addx continue until addx is reached
dcs [name] continue until the next syscall [name]
dcr continue until ret (uses step over)
dr= show general-purpose regs and their values
dro show previous (old) values of registers
drr show register references (telescoping)
dr reg-name = value set register value
drt list register types
drt type list registers of type type and their values
db list breakpoints
db[-] addx add [remove] breakpoint
doo [args] (re)start debugging
ood synonym for doo
ds[o] step into [over]
dbt display backtrace (check dbg.btdepth/btalgo)
drx hardware breakpoints
dm list memory maps; the asterisk shows where

the current offset is
dmm list modules (libraries, loaded binaries)
dmi [addr |lib] [sym] list symbols of target lib
dmp change page permissions (see: dmp?)
dt[d] list all traces [disassembled]

Types: t
"td C-type-def " define a new type
t t-name show type t-name in pf syntax
.t t-name @ addx display the value (of type t-name) at addx
t list (base?) types
te / ts / tu list enums/structs/unions
to file parse type information from C header file
tl t-name link t-name to current address
tl t-name = addx link t-name to address addx
tl list all links in readable format
tp t-name = addx cast data at addx to type t-name,

and prints it

Printing: p
ps [@ addx] print C-string at addx (or current position)
pxr [n] [@ addx] print with references to flags/code (telescoping)
px [n] [@ addx] hexdump — note: x is an alias for px
px{h|w|q} . . . hexdump in 16/32/64 bit words
px{H|W|Q} . . . as the previous one, but one per line
pxl [n] [@ addx] display n rows of hexdump
px/fmt [@ addx] gdb-style printing fmt (in gdb see: help x

from r2: !!gdb -q -ex ’help x’ -ex quit)
pd [n] [@ addx] disassemble n instructions
p8 [n] [@ addx] print bytes
pD [n] [@ addx] disassemble n bytes
pd -n [@ addx] disassemble n instructions backwards
pdf [@ fn-name] disassemble function fn-name
pc[p] [n] [@ addx] dumps in C [Python] format
* addx [=value] shortcut for reading/writing at addx
pf fmt a1[, a2, . . .] formatted print, see pf?? and pf???

Information: i (and S)
i show info of current file
iz[z] strings in data sections [whole binary]
i{e|i|l|S} entrypoint/imports/libraries/sections
S list segments (confusingly called sections?!?)

Visual mode: V (q exits)
Command V enters visual mode.
q exit visual-mode
c cursor-mode, tab switches among panels

+/- increment/decrement current byte
: execute a normal-mode command; e.g. :dm
p and P rotate forward/backward print modes
/str highlight occurrences of string str
$ toggle pseudo-syntax
O toggle ESIL-asm
; add/remove comments (to current offset)
x browse xrefs-to current offset
X browse xrefs-from current function
_ browse flags
d define function, end-function, rename, . . .
di{b|o|d|h|s} define immediate bin/oct/dec/hex or str
V enter block-graph viewer (space toggles visual/graph)
A enter visual-assembler (preview must be confirmed)
n / N seek next/previous function/flag/hit (see scr.nkey)
i enter insert mode
e configures internal variables
" toggle the column mode

Seeking (in Visual Mode)
. seeks to program counter
Enter on jump/call instructions, follow target address
u / U undo / redo
o go/seek to given offset
0 (zero) seek to beginning of current function
d (a non-zero digit) jump to the target marked [d]
ml (a letter) mark the spot with letter l
’l jump to mark l
n / N jump to next/previous function

Debugging (in Visual Mode)
b or F2 toggle breakpoint
F4 run to cursor
s or F7 step-into
S or F8 step-over
F9 continue

Projects: P [unstable feature]
Pl list all projects
P{o|s|d} [prj-name] open/save/delete project prj-name
Pc prj-name show project script to console
Copyright c©2017 by zxgio; cheat-sheet built on November 10, 2017
This cheat-sheet may be freely distributed under the terms of the GNU
General Public License; the latest version can be found at:
https://github.com/zxgio/r2-cheatsheet/

https://github.com/zxgio/r2-cheatsheet/

	Starting Radare
	Running in different environments: rarun2

	General information
	Internal grep-like filtering
	Shell interaction
	Radare scripting
	Python scripting (via r2pipe)
	r2pipe: connecting to other r2 instances

	Configuration
	Some variables

	Searching: /
	Seeking: s
	Writing: w
	Analysis (functions and syscalls): a
	ESIL: ae
	Graphviz/graph code: ag

	Flags (AKA ``bookmarks''): f
	Comments: C
	Debugging: d
	Types: t
	Printing: p
	Information: i (and S)
	Visual mode: V (q exits)
	Seeking (in Visual Mode)
	Debugging (in Visual Mode)

	Projects: P [unstable feature]

